Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Bioresour Bioprocess ; 11(1): 15, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38647933

ABSTRACT

Tobacco polysaccharides were extracted by hot water extraction, and purified and separated using DEAE-52 cellulose chromatography columns, and three purified polysaccharide fractions, YCT-1, YCT-2, and YCT-3, were finally obtained. The physicochemical properties of the three fractions were analyzed by ultraviolet spectroscopy, high-performance liquid chromatography and high-performance gel chromatography. The in vitro antioxidant activity of tobacco polysaccharides was compared among different fractions by using DPPH radical, hydroxyl radical scavenging assay and potassium ferricyanide method. The in vitro hypoglycemic activity was compared using α-amylase and α-glucosidase activity inhibition assay. And the in vitro hypolipidemic activity were investigated by using pancreatic lipase activity inhibition assay and HepG-2 intracellular lipid accumulation assay. All the results showed that the constituent monosaccharides of the three tobacco polysaccharide fractions were similar, but the molar percentages of each monosaccharide were different. The average molecular weights of the three components were 27,727 Da, 27,587 Da, and 66,517 Da, respectively, and the scavenging activities on DPPH radicals and hydroxyl radicals were at a high level with good quantitative-effect relationships. The reducing power were much lower than that of the positive control VC, and the three polysaccharide fractions had a weak inhibitory ability on α-amylase activity, but showed excellent inhibitory ability on α-glucosidase and pancreatic lipase activity. In addition, the results of cellular experiments showed that all three fractions were able to inhibit lipid over-accumulation in HepG-2 cells by increasing the mRNA expression levels of PPAR-α, CPT-1A, and CYP7A1 genes, and the tobacco polysaccharide YCT-3 showed the best effect. The mechanism by which YCT-3 ameliorated the over-accumulation of intracellular lipids in HepG-2 cells was found to be related to its influence on the expression of miR-155-3p and miR-17-3p in the exosomes of HepG-2 cells.

2.
Int J Biol Macromol ; 267(Pt 2): 131551, 2024 May.
Article in English | MEDLINE | ID: mdl-38621566

ABSTRACT

Gentiana dahurica Fisch. (G. dahurica) is one of the legitimate sources of Qinjiao in Traditional Chinese Medicine (TCM) and grows on high-altitude plateaus. Plants develop unique biochemical accumulations to resist plateau conditions, especially the strong UV irradiation. Thus, this study aimed to investigate the polysaccharide of G. dahurica (GDP), its structure and its activity against UVB irradiation. Four GDPs were isolated and two of them were subjected to structural elucidation. The results suggested that GDP-1 has 53.5 % Ara and 30.8 % GalA as its main monosaccharides, with a molecular weight (Mw) of 23 kDa; the GDP-2 has 33.9 % Ara and 48.5 % GalA, with a Mw of 82 kDa. Methylation and NMR spectroscopy analysis revealed that GDP-1 contains →5)-α-Araf-(1 â†’ 5)-α-Araf-(1 â†’ 3,5)-α-Araf-(1 â†’ 3,4)-α-GalpA-(6-OMe)-(1→ as the main chain, the branches of GalA (with esterification), and the terminal Ara; the GDP-2 contains →4)-α-GalpA-(1 â†’ 4)-α-GalpA-(6-OMe)-(1 â†’ 5)-α-Araf-(1 â†’ 3,5)-α-Araf-(1→ as the main chain, the branches of →5)-α-Araf-(1-5)-α-Araf, and the terminal GalA. Both GDP-1 and GDP-2 exhibited concentration-dependent antioxidant activity against DPPH, ABTS and hydroxyl radicals. Moreover, GDPs significantly attenuated the decreases in viability and proliferation of HaCaT cells after UVB irradiation. They can scavenge reactive oxygen species (ROS) and improve the activities of endogenous antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH). The potential mechanism explored by flow cytometry assays of cell apoptosis and cell cycle distribution suggested that GDPs exert protective effects against UVB irradiation by reducing ROS and attenuating S phase cell arrest. In brief, the GDP-1 and GDP-2 are α-1,3- and α-1,4- arabinogalacturonan, respectively. The high content of Ara could be attributed to biochemical accumulation in resisting to the plateau environment and to prevent UVB irradiation-related damage in cells. These findings provide insight into authentic medicinal herbs and the development of GDPs in the modern pharmaceutical and cosmetics industry.


Subject(s)
Antioxidants , Gentiana , Polysaccharides , Ultraviolet Rays , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gentiana/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Monosaccharides/analysis , Molecular Weight , Methylation , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/isolation & purification
3.
Heliyon ; 10(5): e26734, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444476

ABSTRACT

Objectives: Facial asymmetry is a common problem seen in orthodontic clinics that may affect patient esthetics. In some instances, severe asymmetry that affects patient esthetics may cause psychological issues. An objective method is therefore required to help orthodontists identify asymmetry issues. Materials and methods: We used three-dimensional (3D) facial images and landmark-based anthropometric analysis to construct a 3D facial mask to evaluate asymmetry. The landmark coordinates were transformed using a symmetric 3D face model to evaluate the efficacy of this method. Patients with facial asymmetry were recruited to conduct mirror and overlap analysis to form color maps, which were used to verify the utility of the novel soft tissue landmark-based method. Results: The preliminary results demonstrated that the asymmetry evaluation method had a similar response rate compared to diagnosis using mirror and overlap 3D images, and could therefore identify 3D asymmetry problems. Conclusions: By using 3D facial scans and 3D anthropometric analysis, we developed a preliminary evaluation method that provides objective parameters to clinically evaluate patient facial asymmetry and aid in the diagnosis of asymmetric areas. Clinical relevance: This study presents a novel facial asymmetry diagnostic method that has the potential to aid clinical decisions during problem identification, treatment planning, and efficacy evaluation.

4.
Adv Sci (Weinh) ; : e2306924, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460178

ABSTRACT

Inflammation-responsive hydrogels loaded with therapeutic factors are effective biomaterials for bone tissue engineering and regenerative medicine. In this study, a matrix metalloproteinase (MMP)-responsive injectable hydrogel is constructed by integrating an MMP-cleavable peptide (pp) into a covalent tetra-armed poly-(ethylene glycol) (PEG) network for precise drug release upon inflammation stimulation. To establish a pro-regenerative environment, phosphatidylserine (PS) is encapsulated into a scaffold to form the PEG-pp-PS network, which could be triggered by MMP to release a large amount of PS during the early stage of inflammation and retain drug release persistently until the later stage of bone repair. The hydrogel is found to be mechanically and biologically adaptable to the complex bone defect area. In vivo and in vitro studies further demonstrated the ability of PEG-pp-PS to transform macrophages into the anti-inflammatory M2 phenotype and promote osteogenic differentiation, thus, resulting in new bone regeneration. Therefore, this study provides a facile, safe, and promising cell-free strategy on simultaneous immunoregulation and osteoinduction in bone engineering.

5.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 106-110, 2024 Feb 18.
Article in Chinese | MEDLINE | ID: mdl-38318904

ABSTRACT

OBJECTIVE: To develop an efficient and robust method based on three dimensional facial landmarks for evaluating chin region asymmetry at the soft tissue level and to compare it with the traditional mirror-overlap analysis method in order to test its availability. METHODS: Standard symmetrical face was used for mental tubercle coordinate transformation so as to filter soft tissue three dimensional spatial angle and construct corresponding three dimensional spatial angle wireframe template. Ten patients aged 12-32 years with clinical chin region asymmetry diagnosis at the Department of Orthodontics of Peking University Hospital of Stomatology from November 2020 to November 2021 were randomly selected. Three dimensional soft tissue face scan data of the patients were collected by three dimensional face scanner and the landmark points were automatically determined by the Meshmonk non-rigid registration algorithm program, and in this way, the asymmetric three dimensional spatial angle wireframe template and corresponding spatial angle parameters were generated. Mirror-overlap analysis of face scan data was also performed in Geomagic Studio 2015 software and deviation color maps were generated. This study took mirror-overlap analysis as the gold standard method, the response rate of chin region asymmetry was eva-luated by the outcomes of the mirror-overlap analysis and three dimensional spatial angle wireframe template analysis. RESULTS: Nine three dimensional spatial angle indicators were selected through coordinate transformation, and the response rate was calculated using mirror-overlap analysis as the gold standard method. Among these ten selected patients, the response rate of the total chin region asymmetry was 90% (9/10). Using the deviation value of mirror-overlap analysis as a reference, the response rate of chin region asymmetry in the X dimension was 86%, the response rate of chin region asymmetry in the Y dimension was 89%, and the response rate of chin region asymmetry in the Z dimension was 100%. CONCLUSION: The three dimensional soft tissue spatial angle wireframe template proposed in this study has some feasibility in evaluating chin region asymmetry at the soft tissue level, and its ability to recognize asymmetry separately in the three dimensional direction is better than the mirror-overlap analysis method, and the indicators recognition rate still needs to be further improved.


Subject(s)
Face , Facial Asymmetry , Humans , Chin , Face/diagnostic imaging , Facial Asymmetry/diagnostic imaging , Imaging, Three-Dimensional/methods , Software , Cephalometry/methods
6.
Article in English | MEDLINE | ID: mdl-38285580

ABSTRACT

Deep learning methods have achieved impressive performance in compressed video quality enhancement tasks. However, these methods rely excessively on practical experience by manually designing the network structure and do not fully exploit the potential of the feature information contained in the video sequences, i.e., not taking full advantage of the multiscale similarity of the compressed artifact information and not seriously considering the impact of the partition boundaries in the compressed video on the overall video quality. In this article, we propose a novel Mixed Difference Equation inspired Transformer (MDEformer) for compressed video quality enhancement, which provides a relatively reliable principle to guide the network design and yields a new insight into the interpretable transformer. Specifically, drawing on the graphical concept of the mixed difference equation (MDE), we utilize multiple cross-layer cross-attention aggregation (CCA) modules to establish long-range dependencies between encoders and decoders of the transformer, where partition boundary smoothing (PBS) modules are inserted as feedforward networks. The CCA module can make full use of the multiscale similarity of compression artifacts to effectively remove compression artifacts, and recover the texture and detail information of the frame. The PBS module leverages the sensitivity of smoothing convolution to partition boundaries to eliminate the impact of partition boundaries on the quality of compressed video and improve its overall quality, while not having too much impacts on non-boundary pixels. Extensive experiments on the MFQE 2.0 dataset demonstrate that the proposed MDEformer can eliminate compression artifacts for improving the quality of the compressed video, and surpasses the state-of-the-arts (SOTAs) in terms of both objective metrics and visual quality.

7.
J Diabetes Sci Technol ; 18(1): 14-21, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37978817

ABSTRACT

BACKGROUND: Acclimating to a new technology device, such as a continuous glucose monitor (CGM), can be challenging. Current resources may not sufficiently answer questions patients living with diabetes (PWD) may have. We asked how we might improve the process to onboard a PWD to CGM. Our specific aims were (1) to develop, employing a co-designing approach, a prototype of an app for facilitating onboarding to CGM and (2) to obtain early feedback on its usability. METHODS: We applied a human-centered design (HCD) approach; this process first seeks to deeply understand the unmet needs and frustrations users face. After wearing a demonstration CGM; observing PWD onboarding with health care professionals (HCPs) in clinic; and interviewing 8 PWD and 2 HCP, we developed, tested, and refined a low-fidelity prototype of a clickable app. With insights from this initial round of feedback, we then created a high-fidelity prototype with 3 key features: (1) individual entry of goals and questions; (2) a daily progress tracker for these goals; and (3) a community portal that facilitates exchange of questions and answers. We used the validated System Usability Scale (SUS) to quantify user feedback. RESULTS: Focus group participants found our early app to be usable and acceptable. Measurement of usability by the SUS yielded a score of 74, which is above average (68) reported for all applications tested, per usability.gov. CONCLUSIONS: Our early prototype app is a more personalized, additional tool that could bridge an information and support gap for patients who are new to CGM. This app could also help PWD on an ongoing basis, by evolving with them to enhance ease and engagement with diabetes self-management.


Subject(s)
Diabetes Mellitus , Mobile Applications , Humans , Blood Glucose Self-Monitoring , Continuous Glucose Monitoring , Blood Glucose , Diabetes Mellitus/therapy
8.
Acta Diabetol ; 61(2): 205-214, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831174

ABSTRACT

AIM: Women with twin pregnancies have an increased risk of gestational diabetes mellitus (GDM). Assisted reproductive technology (ART) and pre-pregnancy smoking were both associated with GDM. However, the relationships between pre-pregnancy smoking and ART and GDM in twin pregnancies were unclear. Herein, this study aims to explore the roles of pre-pregnancy smoking and ART in GDM among women with twin pregnancies. METHODS: Data of women with twin pregnancies were extracted from the National Vital Statistics System (NVSS) database in 2016-2020 in this retrospective cohort study. Univariate and multivariate logistic regression analyses were used to explore the associations between pre-pregnancy smoking and ART and GDM in women with twin pregnancies. The evaluation index was odds ratios (ORs) with 95% confidence intervals (CIs). Subgroup analysis of age and BMI was also performed. RESULTS: A total of 19,860 (9.15%) women had GDM in our study. After adjusting for covariates, we found that receiving ART was associated with high odds of GDM [OR = 1.41, 95% CI (1.34-1.48)], while pre-pregnancy smoking combined with ART was associated with higher odds of GDM [OR = 1.66, 95% CI (1.14-2.42)]. In addition, these relationships were also found in women who aged ≥ 35 years old [OR = 1.98, 95% CI (1.14-3.44)] and with BMI ≥ 25 kg/m2 [OR = 1.69, 95% CI (1.11-2.55)]. CONCLUSION: Pre-pregnancy smoking may further increase the risk of GDM from ART in women with twin pregnancies. In clinical, women who are ready to receive ART treatment are recommend to quit smoking, which may reduce the risk of GDM and prevent adverse pregnancy outcomes.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Adult , Male , Diabetes, Gestational/epidemiology , Diabetes, Gestational/etiology , Pregnancy, Twin , Retrospective Studies , Risk Factors , Reproductive Techniques, Assisted/adverse effects , Pregnancy Outcome , Smoking/adverse effects , Smoking/epidemiology
9.
Cytokine ; 173: 156438, 2024 01.
Article in English | MEDLINE | ID: mdl-37976702

ABSTRACT

OBJECTIVES: To explore the role of allograft inflammatory factor-1 (AIF-1) both in diabetic rat bladder urothelium and in high-glucose-treated human urothelial cell line (SV-HUC-1). METHODS: Inflammation and oxidative stress (OS) promote diabetic cystopathy (DCP), but the mechanisms are not fully understood. The expression level of AIF-1 in diabetic rat bladder urothelium and in the SV-HUC-1 cells treated with high glucose was detected using tissue immunofluorescence, immunohistochemistry and western blot assays. AIF-1 was knocked down and NF-κB was suppressed with the specific inhibitor BAY 11-7082 in high-glucose-treated SV-HUC-1 cells. RESULTS: High-glucose condition induced AIF-1 upregulation in vivo and in vitro. The up-regulated AIF-1 induced the production of inflammatory factors IL-6 and TNF-α and elevation of ROS. Informatics analysis suggested that NF-κB pathway is implicated in DCP. Through knockdown of AIF-1, we confirmed that AIF-1 simulated NF-κB pathway by enhancing the phosphorylation of IκB (p-IκB) and promoting the translocation of NF-κB p65 from cytoplasm into nucleus. Additionally, High-glucose-induced inflammation in SV-HUC-1 cells was attenuated by the addition of NF-κB inhibitor. CONCLUSIONS: This study provides novel information to understand the molecular regulation mechanisms of AIF-1 in DCP.


Subject(s)
Diabetes Mellitus , NF-kappa B , Rats , Humans , Animals , NF-kappa B/metabolism , Urinary Bladder/metabolism , Urothelium/metabolism , Inflammation/metabolism , Oxidative Stress , Diabetes Mellitus/metabolism , Glucose/metabolism , Allografts/metabolism
10.
IEEE Trans Cybern ; PP2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37906479

ABSTRACT

Reconstructing a high-resolution hyperspectral image (HSI) from a low-resolution HSI is significant for many applications, such as remote sensing and aerospace. Most deep learning-based HSI super-resolution methods pay more attention to developing novel network structures but rarely study the HSI super-resolution problem from the perspective of image dynamic evolution. In this article, we propose that the HSI pixel motion during the super-resolution reconstruction process can be analogized to the particle movement in the smoothed particle hydrodynamics (SPH) field. To this end, we design an SPH network (SPH-Net) for HSI super-resolution in light of the SPH theory. Specifically, we construct a smooth function based on SPH and design a smooth convolution in multiscales to exploit spectral correlation and preserve the spectral information in the super-resolved image. In addition, we apply the SPH approximation method to discretize the Navier-Stokes motion equation into SPH equation form, which can guide the HSI pixel motion in the desired direction during super-resolution reconstruction, thereby producing clear edges in the spatial domain. Experiments on three public hyperspectral datasets demonstrate that the proposed SPH-Net outperforms the state-of-the-art methods in terms of objective metrics and visual quality.

11.
Dalton Trans ; 52(39): 14132-14141, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37747221

ABSTRACT

The optical characteristics of multimode luminescent materials like multimode luminescence (photoluminescence, afterglow, thermoluminescence) and a multi-excitation source (light, thermal, mechanical force) play crucial roles in optical data storage and readout, document security and anticounterfeiting. A higher level of advanced anticounterfeiting may rely on multimode anticounterfeiting materials that can realize multicolor luminescence. Here, a highly integrated multimode and multicolor Y7O6F9:Er3+,Eu3+ material is developed through multiplexing of dual lanthanides in fluorine oxide particles. In photoluminescence and photoluminescence/up-conversion luminescence modes, the material Y7O6F9:Er3+,Eu3+ has the characteristic of excitation wavelength and power dependence. In the photoluminescence mode, under excitation at 254 nm and 365 nm, Y7O6F9:Er3+ and Y7O6F9:Eu3+ showed bright red and green emissions, respectively. In the photoluminescence/up-conversion mode, under the increased excitation power from 0.2 to 2.0 W cm-2, the color of luminescence emission can be finely tuned from red to orange, yellow and green. Taking this unique excitation wavelength-power-dependent luminescence property into account, a multilevel anticounterfeiting device with the Lily pattern was designed. The device readily integrates the advantages of the excitation wavelength-dependent photoluminescence emissions and excitation power-dependent photoluminescence emissions in one overall device. These findings offer unique insight for designing highly integrated multimode, multicolor luminescence materials and advanced anticounterfeiting technology toward a wide variety of applications, particularly multilevel anticounterfeiting devices.

12.
J Fluoresc ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721706

ABSTRACT

The development of portable and cost-effective sensing system for Hg2+ quantitation is highly demanded for environmental monitoring. Herein, an on-site, rapid and portable smartphone readout device based Hg2+ sensing system integrating nitrogen-doped carbon quantum dots (NCDs) modified paper strip was proposed, and the physicochemical properties of NCDs were characterized by high resolution TEM, FTIR, UV-vis absorption spectrum and fluorescence spectral analysis. The modified paper strip was prepared via "ink-jet" printing technology and exhibits sensitive fluorescence response to Hg2+ with fluorescence color of bright blue (at the excitation/emission wavelength of 365/440 nm). This portable smartphone-based sensing platform is highly selective and sensitive to Hg2+ with the limit of detection (LOD) of 10.6 nM and the concentration range of 0-130 nM. In addition, the recoveries of tap water and local lake water were in the range of 89.4% to 109%. The cost-effective sensing system based on smartphone shows a great potential for trace amounts of Hg2+ monitoring in environmental water samples.

13.
Front Med (Lausanne) ; 10: 1212851, 2023.
Article in English | MEDLINE | ID: mdl-37601787

ABSTRACT

Objective: To analyze and evaluate the role of the High-throughput Drug Sensitivity (HDS) screening strategy in identifying highly sensitive drugs against esophageal squamous cell carcinoma (ESCC). Methods: A total of 80 patients with progressive ESCC were randomly divided into the observation (40 cases) and the control groups (40 cases). In the observation group, primary ESCC cells were isolated from the tumor tissues with a gastroscope, and drug sensitivity screening was performed on cells derived from the 40 ESCC cases using the HDS method, followed by verification in a patient-derived tumor xenograft (PDX) mouse model. Finally, the differences in the therapeutic efficacy (levels of CEA, CYFRA21-1, SCCA after chemotherapy and the rates of overall survival, local progression, and distant metastasis at 12 months and 18 months time points after chemotherapy) were compared between the observation group (Screened drug-treated) and the control group (Paclitaxel combined with cisplatin regimen-treated). Results: Forty ESCC patients were screened for nine different high-sensitive chemotherapeutics, with the majority showing sensitivity to Bortezomib. Experiments on animal models revealed that the tumor tissue mass of PDX mice treated with the HDS-screened drug was significantly lower than that of the Paclitaxel-treated mice (p < 0.05), and the therapeutic efficacy of the observation group was better than the control group (p < 0.05). Conclusion: HDS screening technology can be beneficial in screening high-efficacy anticancer drugs for advanced-stage ESCC patients, thereby minimizing adverse drug toxicity in critically ill patients. Moreover, this study provides a new avenue for treating advanced ESCC patients with improved outcomes.

14.
Front Microbiol ; 14: 1232279, 2023.
Article in English | MEDLINE | ID: mdl-37577430

ABSTRACT

Potato virus Y (PVY) infection causes necrosis and curling of leaves, which seriously affect the yield and quality of Solanaceous crops. The roles of nutrient elements in the regulation of plant resistance to virus infection has been widely reported, while the mechanisms are poorly studied. Previous studies in our laboratory have demonstrated that foliar spraying of MgSO4 could induce Nicotiana tabacum resistance to PVY by increasing the activity of defense-related enzymes. Consistent with the results, we found that exogenous magnesium (Mg) had a certain effect on N. tabacum anti-PVY infection. Meanwhile, Illumina RNA sequencing revealed that Mg induced resistance to PVY infection was mainly by regulating carbohydrate metabolism and transportation, nitrogen metabolism, Ca2+ signal transduction and oxidative phosphorylation. Moreover, we used virus-induced gene silencing assays to verify the function of homologs of five N. tabacum genes involved in above pathways in N. benthamiana. The results showed that NbTPS and NbGBE were conducive to PVY infection, while NbPPases and NbNR were related to resistance to PVY infection. These results suggested a novel strategy for resistance to PVY infection and provided a theoretical basis for virus-resistance breeding.

15.
Dalton Trans ; 52(33): 11649-11657, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37552091

ABSTRACT

In recent years, a series of persistent luminescence materials excitable by blue light have been developed and widely used in many fields such as optical information storage, AC-LEDs, anti-counterfeiting and bio-imaging. However, it is still a long-standing challenge to develop a superior red-emitting persistent phosphor that can be efficiently excited by blue light. In this work, a novel blue-light excited red-emitting persistent phosphor CaCd2Ga2Ge3O12:Pr3+ was successfully synthesized by using a solid-state method, showing excellent luminescence properties. Moreover, the phase purity, crystal structure, photoluminescence spectra, afterglow emission spectra, and three-dimensional thermoluminescence spectrum were successfully investigated. Under 294 nm excitation, photoluminescence spectra show a single orange emission and a series of peaks centered at 492, 537, 568, 614 and 664 nm, which correspond to the 3P0 → 3H4, 3P0 → 3H5, 3P2 → 3H6, 1D2 → 3H4, and 3P0 → 3F2 transitions of Pr3+, respectively. Interestingly, after blue light excitation, the afterglow luminescence exhibits red long emission, which is attributed to the 1D2 → 3H4 transition of Pr3+. Through thermoluminescence spectra and three-dimensional thermoluminescence spectra, we analyze the reasons for the different colors of photoluminescence and afterglow luminescence. The results imply that there are two types of traps, and the depth of shallow traps and deep traps is calculated to be 0.684 and 0.776 eV, respectively. It is worth noting that the photoluminescence is attributed to the 4f2 → 4f5d and f → f transitions of Pr3+, and the afterglow luminescence is ascribed to a tunneling-related process and the transition of electrons from the valence band to the conduction band. The obtained red-emitting persistent phosphors provide a promising pathway toward AC-LEDs, multi-cycle bio-imaging and other fields.

16.
BMC Oral Health ; 23(1): 500, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468873

ABSTRACT

OBJECTIVES: We used three-dimensional (3D) virtual images to undertake a subjective evaluation of how different factors affect the perception of facial asymmetry among orthodontists and laypersons with the aim of providing a quantitative reference for clinics. MATERIALS AND METHODS: A 3D virtual symmetrical facial image was acquired using FaceGen Modeller software. The left chin, mandible, lip and cheek of the virtual face were simulated in the horizontal (interior/exterior), vertical (up/down), or sagittal (forward or backward) direction in 3, 5, and 7 mm respectively with Maya software to increase asymmetry for the further subjective evaluation. A pilot study was performed among ten volunteers and 30 subjects of each group were expected to be included based on 80% sensitivity in this study. The sample size was increased by 60% to exclude incomplete and unqualified questionnaires. Eventually, a total of 48 orthodontists and 40 laypersons evaluated these images with a 10-point visual analog scale (VAS). The images were presented in random order. Each image would stop for 30 s for observers with a two-second interval between images. Asymmetry ratings and recognition accuracy for asymmetric virtual faces were analyzed to explore how different factors affect the subjective evaluation of facial asymmetry. Multivariate linear regression and multivariate logistic regression models were used for statistical data analysis. RESULTS: Orthodontists were found to be more critical of asymmetry than laypersons. Our results showed that observers progressively decreased ratings by 1.219 on the VAS scale and increased recognition rates by 2.301-fold as the degree of asymmetry increased by 2 mm; asymmetry in the sagittal direction was the least noticeable compared with the horizontal and vertical directions; and chin asymmetry turned out to be the most sensitive part among the four parts we simulated. Mandible asymmetry was easily confused with cheek asymmetry in the horizontal direction. CONCLUSIONS: The degree, types and parts of asymmetry can affect ratings for facial deformity as well as the accuracy rate of identifying the asymmetrical part. Although orthodontists have higher accuracy in diagnosing asymmetrical faces than laypersons, they fail to correctly distinguish some specific asymmetrical areas.


Subject(s)
Facial Asymmetry , Orthodontists , Humans , Facial Asymmetry/diagnostic imaging , Cross-Sectional Studies , Pilot Projects , Chin , Imaging, Three-Dimensional/methods , Esthetics, Dental
17.
Math Biosci Eng ; 20(6): 11139-11154, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37322975

ABSTRACT

To solve the problem of missing data features using a deep convolutional neural network (DCNN), this paper proposes an improved gesture recognition method. The method first extracts the time-frequency spectrogram of surface electromyography (sEMG) using the continuous wavelet transform. Then, the Spatial Attention Module (SAM) is introduced to construct the DCNN-SAM model. The residual module is embedded to improve the feature representation of relevant regions, and reduces the problem of missing features. Finally, experiments with 10 different gestures are done for verification. The results validate that the recognition accuracy of the improved method is 96.1%. Compared with the DCNN, the accuracy is improved by about 6 percentage points.


Subject(s)
Gestures , Wavelet Analysis , Neural Networks, Computer , Electromyography/methods , Algorithms
18.
Colloids Surf B Biointerfaces ; 226: 113313, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37075522

ABSTRACT

Zn2+ and H2S are essential to maintain normal prostate function, and sometimes can evolve into weapons to attack and destroy prostate cancer (PCa) cells. Nevertheless, how to achieve the targeted and effective release of Zn2+ and H2S, and reverse the concentration distribution within PCa tumor cells still highly challenging. Herein, combined with these pathological characteristics of prostate, we proposed a tumor microenvironment (TME) responsive Zn2+-interference and H2S-mediated gas synergistic therapy strategy based on a nanoplatform of tannic acid (TA) modified zinc sulfide nanoparticles (ZnS@TA) for the specific treatment of PCa. Once the constructed pH-responsive ZnS@TA internalized by cancer cells, it would instantaneously decomposed in acidic TME, and explosively release excess Zn2+ and H2S exceeding the cell self-regulation threshold. Meanwhile, the in situ produced Zn2+ and H2S synergistic enhancement of cell apoptosis, which is evidenced to increase levels of Bax and Bax/Bcl-2 ratio, release of Cytochrome c in cancer cells, contributing to inhibit the growth of tumor. Moreover, the TA in cooperation with Zn2+ specifically limits the migration and invasion of PCa cells. Both in vitro and in vivo results demonstrate that the Zn2+-interference in combination with H2S-mediated gas therapy achieves an excellent anti-tumor performance. Overall, this nanotheranostic synergistic therapy provides a promising direction for exploring new strategies for cancer treatment based on specific tumor pathological characteristics, and provides a new vision for promoting practical cancer therapy.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Male , Humans , bcl-2-Associated X Protein , Apoptosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Zinc/pharmacology , Cell Line, Tumor , Tumor Microenvironment
19.
Dalton Trans ; 52(7): 2145-2156, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36722897

ABSTRACT

Luminescent anti-counterfeiting materials have drawn much attention in anti-counterfeiting applications due to their photochemical stability and emission patterns. However, conventional materials majorly use single-mode luminescence, leaving a growing demand for new materials to prevent counterfeiting. In this work, multi-mode anti-counterfeiting is guaranteed from a single luminescent material CaCd2Ga2Ge3O12:Tb3+,Yb3+via a high-temperature solid-state reaction. The experimental result showed that this single material features green luminescence with excellent photoluminescence, afterglow, thermoluminescence, and up-conversion luminescence, which are ascribed to Tb3+ transitions. Upon co-doping with Yb3+ as a sensitiser, the photo-stimuli responsiveness was achieved at 254 and 980 nm excitation sources, respectively, and the thermo-stimuli responsiveness was realised after exposure to UV of 254 nm for 10 s and heating at 45 °C, respectively. The band structure calculation, trap distribution, and effective trap depths were used to explain the luminescence mechanism. Based on the two-stimuli responsiveness and four-state emission performance, we prepared images of optical devices using silk screen printing technology. It was found that the images displayed green emission under different luminescence modes. The results prove that we successfully constructed an advanced luminescence anti-counterfeiting material.

SELECTION OF CITATIONS
SEARCH DETAIL
...